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Tllis paper discusses selected aspects of an MIT Linco~l Laboratory effort developing infonnation fusiou techniques for
biodefense decision-support tasks, involving biological standoff (lidar - fight !letection gnd ranging) sensors,
meteorology, as well as point sensors and potentially other battiespace sensing and contextual infomlation. The
Spatiotemporal Coherence (STC) fusion approach developed in this effort combines phenomenology aspects with
approximate uncertainty measures to qnantify corroboration between the infonnation elements. The results indicate that
STC can significantly reduce false alann rates. Meandering Plume and Background Simulation is one of two techniques
developed for ground-truth data generation. Beyond the detection reahn, developed teclmiques include information
fusion based plume mapping and propagation prediction.
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1 INTRODUCTlON

Decision-makers involved in biological, or chenrical, defense are faced with a variety of decisions they have to make
accurately and in a timely fasllion both before, during and after an attack. Decisions that need to be made prior to any
biological attack include resource plamllng such as sensor placement and utilization, prophylaxis, decontamination, and
other options and contingencies. In some situations there might be much time to make them; in others the decisions have
to be made quickly, increasing the need for robust decision-support means. The decisions that need to be made once a
biological attack has occurred include recognizing attack occurrence, attack characterization, response options, and
others. The decision tasks for biodefense decision-support systems include those of detection, plume mapping,
propagation prediction (forecasting), identification, course-of-action guidance, adversary intent prediction, and
consequence management. Robust decision-support systems can greatly assist making these decisions, especially
considering the time pressures faced by the decision-maker.

1 TillS work was sponsored by the Department of the Army under Air Force Contract #FA8721-05-C-0002. Opinions,
interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the
United States Govennnent.
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Biological sensors are the obvious and necessary "front end" for a biodefense decision-support system. Biological
sensing technologies include standoff sensors and point sensors. Biological standoff sensors referred to in this work are
lidar based, and in this paper the term standoff and lidar will be used interchangeably. Biological standoff and point
sensors differ not only in their general characteristics, bnt also in terms of their respective strengths. For example, point
sensors' particular strengths include sensitivity and specificity. However, as the tenn implies, point sensors provide
indications for their particular location. Standoff sensors on the other hand provide spatial coverage. This can be
particularly valuable for early warning or for mapping and tracking the plume. These are some of the tradeoffs that arise
when biodefense tasks are viewed from the sensing technology viewpoint.

Information fusion - the algorithmic technology domain that aims at a synergistic exploitation of multiple sensors and
other infomlation sources - offers the potential to relax these tradeoffs. It can take advantage of respective strengths of
the individual sensors or sensing technologies, and improve Il,e overall system performance beyond that of an individual
biological sensor.3,4,S.6,9

This paper discusses selected aspects of an MIT Lincoln Laboratory effort developing information fusion techniques for
biodefense decision-support tasks, involving biological standoff and other information sources. The approaches
developed in this effort take advantage of information sources which are not biological sensors but may offer data
potentially relevant to biodefense decision-support tasks. Meteorological data are a prominent example of such
information sources. For instance, wind direction and speed influence Il,e plume transport and dispersion, and the
teclmiques developed in this effort take advantage of that relationship. In principle, various other sources such as radar
or electro-optical ISR sensors, acoustic, seismic, and other sensor and contextual information sources also can be
exploitable by the infonnation-fusion process.

Reduction of false alanns in the bioaltack detection task context has been an important objective in this effort, and
infonnation-fusion teclmiques developed to accomplish that objective are discussed. Furthermore, techniques for
higher-level decision-support tasks, namely fusion-based plume cloud mapping (tracking) and fusion-based plume
propagation prediction (forecasting) teclmiques developed in this effort are discussed as well. These techniques are
applicable to a ftxed installation protection and other applications in the military or homeland-protection defense realms.

While development of information fusion algorilllltls has been a key focus, tllis effort also required development and
advances in several other areas that were needed to support the infonnation-fusion algorithnls development main thrust.
These supporting areas included sensor modeling, threat scenarios, sensing architectures, techniques for generating data
for infonnation-fusion algorithms development, and the development of measures of performance for the performance
studies.

This paper discusses some, not all, aspects of this relatively extensive effort. Section 2 discusses the techniques
developed for the ground-truth and mullisource data generation. Techniques developed for the detection task with a
particular goal of reducing false alarms are discussed in section 3. Expanding beyond detection to higher-level decision
snpport tasks, in section 4 we present Ille approach developed for fusion-based plume mapping, and in section 5 Il,e
approach developed for fusion-based plume propagation prediction is presented.

This paper has a companion paper'. The two papers complement one another, in part overlapping and in part covering
different elements and aspects of the effort. The present paper assumes that the readers are fanliliar with the CBRNE
defense and sensing domain, including areas such as biodefense-related phenomenology and transport and dispersion
models, bnt are not necessarily focused or involved in algorithmic aspects or infomlation fusion. Consequently, the
present paper covers the techniques developed for information-fusion based bioaltack detection, plume mapping
(tracking), and plume propagation prediction (forecasting), essentially at an overview level. The companion paper', on
the other hand, assumes readers with infom13tion-fusion expertise, including advanced topics such as machine learning,
and focnses in a greater depth on the detection-task aspects of this effort. However, since those readers may not
necessarily be familiar with the biological and chemical defense domain, the companion paper' inclndes some of the
basics related to biological and chemical defense and sensing. There are some overlaps between the two papers. In
many cases the overlaps are in terms of topics, bnt may differ in coverage level of depth. For example, the data
generation teclnliques are covered in both papers, but the level of coverage is somewhat different. Also, both papers
discuss the detection task and the Spatiotemporal Coherence (STC) fusion approach introduced in this effort, but the
present paper covers them in broad tenns while the companion paper' includes more detail. While the present paper



discusses in more detail the measures of performance introduced for mapping and propagation prediction, the companion
pape? addresses in more detail the detection-task measures of performance introduced in this effort. Nevertheless, in the
interest of readability and clarity, in some instances the discussion, including the language of some paragraphs (e.g., this
paragraph), may be similar between the two papers.

2 GROUND TRUTH AND MULTISOURCE DATA

Availability of release and background data is a prerequisite to information-fusion algorithms development and
performance studies. Release data can be obtained from measurements of simulant releases, or by computational
simulations. Background data can be obtained from background measurements in given environments, and also from
simulations. However, obtaining these data presents a number of challenges. Those challenges and the solutions
developed in this effort to address them are briefly outlined in this section.

The data required for information-fusion algorithms' development and studies include data from multiple sensors and
potentially other sources, and their temporal progressions. For point sensors, this means indications as a function of
time, from potentially multiple non-collocated sensors. For standoff sensors in this work, this involves two-dimensional
time-dependent data corresponding to the lidar standoff sensor observations of the area within its field-ol-regard. Data
from meteorology or any other information sources are also generally functions of time and space.

Multisource data are thus time-series of some duration. Each such data sequence is referred to in tltis work as a case,
either a background case or a release case. The background cases are those in wltich no release occurs during the case
duration. The release cases are those sequences in which a release does occur at some time-point during the sequence.

The above multisource data represent what would be potentially available as input to the decision-support system.
Those data reflect, to a level of accuracy dependent on the sources and on the particular situation, the underlying actual
physical reality sensed or evaluated by the information sources that provide those data. That underlying reality is
referred to as the ground truth. While clearly the ground truth is not normally available to systems other than via the
information sources as discussed above, performance studies of systems and algorithms generally need some form of
ground truth for use as a reference. Thns, infomlation fusion algorithms' development and studies require both the
multisource data and the ground truth data. For the work discussed in this paper, the complete ground truth includes
time-varying concentrations of biological substances at all points within the area in which the bioaltack detection is to be
performed, and the case category (background or release).

A purely measurement-oriented approach for obtaining both ground-truth data and multisensor data corresponding to it
is possible. Sensors observing a given area serve as multisource inputs to to the fusion process. Other sensors provide
outputs that are by definition considered the ground truth. The data from those sensors are excluded from use in the
fusion process, but serve as a reference for perfomlance studies. Clearly, this approach requires measurement
experiments as well as the sensors suitable for the ground-truth generation use.

Two approaches were pursued in tltis work as alternatives to the above. One of these alternatives involved the use of
sensor data and sensor models. In that approach, available sensor data are appropriately post-processed and enhanced,
yielding outputs that are viewed as the ground truth, but are obviously not used as multisensor data. Rather, the
multisensor data are subsequently generated by applying sensor models to that ground truth. The sensor models,
fulfilling the role of the sensing process, perturb the ground truth by the desired levels of inexactness. The second
approach involved generating the ground truth by computational simulation, and applying sensor models to that ground
truth to yield multisource data.

A question ntighl be posed how accurate is the ground trutll generated by either of the approaches. This is a challenging
question, due to the complex aud dynamic nature of the observed aerosol phenomena. However, for information fusion
development and perfonnance studies, it is not necessary to resolve tltis question at an individual plume realization level.
As long as the data exhibit the characteristics deemed to reasonably approximate an expected behavior of the phenomena
of interest such as an aerosol plume, they can be validly used as ground truth. We shall return to this point when
discussing our simulation approach below.



2.1 Release Augmentation approach

The objective of the Release Augmentation approach is to increase the utility of available measured data for infonnation
fusion work.' The needed data include those representing release-in-background cases under some desired background
conditions. However, since the simulant release experiments are nOimally carried out at test sites, the data measured in
those experiments represent specific test-site background conditions. Clearly, those conditions may differ from
background conditions in other settings.

As for measuring the backgrounds alone, any logistics issues notwithstanding, it is certainly possible to measure
backgrounds in variety of settings other than test sites, and data from some background data collections are available.
The meteorological conditions, in particular the wind direction and speed, are also nonnally different between test sites
and other settings. All of the above imply that the available measured background data and release-in-background data
often differ in tenus in background and meteorology conditions. This makes them mutually incompatible for nse as
input to the infonuation fusion algorithms or perfonuance studies.

The Release Augmentation approach we developed alleviates this issue, increasing the utility of available measured data
for use as the infonuation-fusion ground truth. The approach involves computational combining of data from release
and background measurements. Briefly, the process starts with two-dimensional measured data, such as those
originating from a lidar standoff sensor. The obstructions to standoff sensor, known as hard tGlgets, are detennined.
The release data are processed to extract the release plume from test-site background. The process we refer to as plume
tapering computationally extends the plume below the threshold of standoff sensor sensitivity. This allows the
generation of ground truth independent of that sensitivity threshold. The resulting plume data are then computationally
transfonned to reconcile them with the given background data. The wind velocities corresponding to the plume and
background data drive this transfonnation process. This yields the ground truth data.

The Release Augmentation approach allows generation of significantly more ground-truth cases than would be available
from sensor measurements alone. Furthennore, it leads to greater flexibility since it enables embedding various plumes
in various backgrounds. However, ultimately, the Release Augmentation approach depends on the overall amount of
available measured data. The logistics and cost of measurement campaigns places practical constraints on sensor data
collections. The simulation approach developed in this effort and described in the following subsection provides a path
to generate significant amounts of data unconstrained by experimental measurement-related aspects.

2.2 Meandering Plnme and Backgronnd Simulation

Modeling of aerosol transport and dispersion has traditionally been approached either with the large-ensemble models or
with Computational Fluid Dynamics (CFD) models. Large ensemble models are attractive due to their relative
computational efficiency. They provide a probabilistic view of the plume behavior. The output of a large-ensemble
model may be thought of as representing in a statistical sense a large number of separate individual plumes rather than
any given specific plume (we will also interchangeably refer to single plumes as single realizatious). In the context of
infomlation fusion, the utility of large-ensemble models is limited because the spatio-temporal characteristics of a
specific plume are not represented in the large ensemble average view. This becomes quite evident when a large
ensemble plume model output, with its distribution-like shape regularity, is compared to the complex shape evolution
and meandering of a typical single-realization plume. CFD models generate single-realization plumes and can be
considered a gold standard. Unfortunately, CFD models are computationally extremely costly. This severely limits their
practicality as an approach for generating significant amounts of cases needed for the infonuation-fusion work.

Meandering Plume and Background Simulation (MPBS), a computationally efficient single-realization simulation
approach we developed, alleviates the limitations and issues discussed above. MPBS allows computationally-efficient
simulation of numerous individual release-in-background sequences for a variety of release parameters and background
conditions. MPBS combines stochastic and physics-based aspects, reminiscent of our earlier simulation workS which
served as a starting point for MPBS. However, unlike that approach, MPBS includes a robust representation of
turbulence effects, and temporal and spatial correlations. This yields simulation results tbat include the desired
turbulence-driven effects. Major components of MPBS include transport and dispersion, wind-field generation, and
turbulence estimation. Figure la depicts the overall view ofMPBS. An example ofMPBS results in Figure lb includes
three tinle snapshots of a continuous point-release. Figure lc shows four snapshots of a line release in a scene that



includes obstacles. In addition to the meandering, folding and stretching effects, this example result also illustrates the
effects ofobstacles on MPBS plume propagalion.

The question of ground-truth fidelity is sometimes raised in connection with simulation approaches, especially when
tradeoffs that simplify an approach are involved. For applications in which the simulation objective is to make
predictions, e.g., forecast plume concentration of the progressing release at some specific point and time, this certainly is
an important question.

However, as we have argued in the previous publications,'···J the plume simulation requirements for the information
fusion work are more relaxed. Each of the cases simulated by MPBS mayor may not be traceable to a specific release
and to ilS corresponding set of release paramelers. All that is required is that each case constitutes a physically pIal/sible
single realization release and its progression, and that the complete set ofcases reasonably "covers" in a statistical sense
the space of plausible releases. Our results indicate that MPBS meets these objectives.
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Figure 1: Meandering Plume and Background Simulation (MPBS) and simulation examples

3 INFORMATION FUSION FOR BIOATTACK DETECTION

Information-fusion approaches developed in tllis effort for the detection task false-alarm reduction included an approach
lhat was introduced and termed Spatiotemporal Coherence (STC) fusion,' adaptive extensions to STC, and a machine
learning approach. The following is a general description of STC. Further details and the discussion of adaptive and
machine-learning aspects can be found in the companion paper'.

STC combines phenomenology and uncertainty aspects to quantify the level of corroboration between the different
infornlation sources. This includes in particular the biological standoff, point, and meteorology sensors. However, other
sensor or source indications can also be acconunodated by STC. Consider a set of alann events issued by standoff
and/or point sensors and the meteorology data such as wind velocity sensor indications. STC detemliues how these
indications "fit together" as part of a potential consistent picture of a progressing bioanack. If they can be satisfactorily
"explained" by a putative plume progression, STC increases ti,e confidence level in those alarms accordingly. The less
the indications corroborate one another, the lesser overall level of confidence. STC discards alanns that are not
sufficiently corroborated by other evidence elements, as false. That leads to a selective suppression of alarms, and may
result in false-alarm reduction.

The principle of STC is notionally illustrated in Figure 2a assuming a standoff, point, and meleorology sensing
architecture, although it is straightforward to recast tllis ilIuslralion in terms ofother sensing sources. The figure shows a
standoff sensor indicating an alarm at a certain location, followed by a point sensor alann at another localion. If these
two alarm indications corroborate one another, i.e., if it is likely that both alarms correspond to a plume that had
progressed consisteut with the given wind direction and magllitude, ti,e alarm is deemed high confidence. As ti,e above
level of corroboration decreases, so does overall alaml confidence level.

STC involves two types of construClS that govern the coherence determination process. They define the level of
uncertainty as function of time and space 8!Jd are referred to coherence functions. As shown in Figure 2bJ the temporal
coherence profile is sigmoidal - the more separated the indications are in time, the less they are believed to corroborate
one another. The spatial coherence functions afe Gaussians with varying parameter values. While the increased spatial



distance between alann indications generally lowers their mutual corroboration level, the degree of corroboration is tied
to the temporal aspect, as shown by the arrows in Figure 2b and by the varying amplitude and width of the spatial
coherence function instances shown in that figure.
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Figure 2: Spatiotemporal Coherence approach: principle and example

A result graph in Figure 3 demonstrates the value of STC for the case of a two biological standoff sensors and
meteorology sensing architecture. For this computational experiment, Meandering Plume and Background Simulation
(MPBS) data were used to construct a dataset that included multiple release and background cases with varying wind
conditions, plume and background conditions. Sensor models that were then activated on that ground truth dataset
yielded a multisensor dataset that constituted the input to the STC fusion process.
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• STC Fusion, Two Standoff Sensors and Meteorology
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Figure 3: False-alann reduction using STC fusion approach

Figure 3 compares STC fusion approach involving two standoff sensors and meteorology, to a simple OR fusion
approach. Both approaches use standoff sensor alarm indications as inputs, a fusion mode called decision-level fusion.
For decision-level fusion, the OR fusion approach constitutes the upper bound on detection, since in OR fusion a
detection by any of the two standoff sensors results in a system alarm. However, OR fusion represents the worst-case
bound for false alanns, since a false alann of any of the two standoff sensors results in a system false-alarm. Thus, for
decision-level fusion approaches the OR fusion can be tlseful as a reference to which other approaches snch as the STC
can be compared. Figure 3 shows that the STC fusion approach offers a competitive detection level, comparable in fact
to the OR fusion upper bound, while the false alarms are very substantially reduced. Thus, the STC fusion approach
developed in tillS effort offers a significant potential of false-alann reduction.

The specifics of the coherence functions, the uncertainty profiles used by STC in the corroboration process, can be
detennined by the designer. TillS is one of the manifestations of the intuitive character of STC and constitutes an
advantage since human knowledge can be captured in this manner. On the other hand, in some situations this can be a
disadvantage. Clearly, a proper selection of the various STC parameters and the associated tuning process requires



human involvement and expertise. Furthenuore, significant changes in environmental and application specifics, such as
changes system deployment settings, may require retuning and consequently an additional human involvement.

Two alternatives to address the above challenge were pursued within tllis effort. The first involved adaptive provisions
for STC, the second involved a supervised leaming approach. Both of these are discussed in sigllificantly more detail in
the companion paper'. In this paper their discussion is Iilnited to the following summary.

The adaptive STC approach involves optimizing STC parameters, such as those related to the coherence function
specifics, in an automatic fashion. This requires availability of an optinlization dataset of background and release cases.
The approach developed in this effort involved a swarm optimization technique. The cost function for the optinlization
process is the elliptical distallce, a measure introduced in this effort, which represents both the detection and false-alarm
aspects. More specifics on this measure, the optimization process and its results can be found in the companion paper'.
The machine leaming approach that was developed, while retaining some of the STC concepts as features, involves
training a supervised machine learning process. The work included feedfolward neural networks'·, as well as some
Support Vector Machine"ll experiments, A more comprehensive discussion of the adaptive STC and the supervised
machine-learning approaches can be found in the companion paper'.

The results obtained within this effort suggest that in some cases additional gains in terms of detections and false-alarm
reduction can be achieved with both the adaplive STC and the machine learning alternative, However, Ihe value of these
approaches extends beyond that. Both the adaptive STC and the machine leaming approaches can take advantage of
additional cases that Illay become available dnring system operation, In particular, false-alaml cases that may occur can
be used to retune the adaptive STC or within a re-training of a machine learning algorithm, in effect adapting the system
during its operation, Fnrthennore, both the optinlization procedure in the case of adaptive STC and the training process
in case of the machine learning approach can be re-activated as needed, such as in cases of major enviromnental changes
or system application setting changes. There are advantages and tradeoffs hetween approaches that involve human
involvement and tuning such as the STC, and the automatically-tunable approaches such as adaptive STC and the
machine leanling techniqnes, The compallion paper includes the discussion of these trade-offs and the associated
considerations, All of these approaches have advantages and could be used in a hybrid fashion along the lines suggested
in our previous publications''', Whether considered separately or in conjunction, the developed infomlation-fusion
teclmiqnes for the bioattack detection task, including the STC fusion approach, its adaptive extensions, and the machine
learning approach, offer a significant false-alaml reduction potential.

4 INFORMATION·FUSION BASED PLUME MAPPING

The detection task addresses, as we mentioned in section I, an important bnt not the only decision that needs to be made
in the context of a hioattack. Once it is determined that an attack has occurred, accurate infom,.tion regarding the threat
plume shape and extent is of significant value to the decision maker. This is referred to as plume mapping. Since the
mapping process is performed continuously, the mapping results are a function of time and therefore represent also
plume tracking.

From the standpoint of the decision-support and infonnation fusion task hierarchy, in relationsllip to the detection task
the plume mapping process can be viewed as a higher-level task. It should be pointed out that the plume mapping task
relies on the detection task and uses detection and discrimination infonnation as one of its inputs.

Since standoff sensors can offer spatial coverage, plume mapping can certainly be perfomled by a single standoff sensor.
In this work the goal was to investigate improvulg the mapping quality by use of multiple sensors within an informatiou
fusion framework and develop teclmiques needed for that. Consider a hypothetical situation such as shown in Figure 4.
The grey rectangles represent hard targets and the irregular shape at the center of the figure represents the actual plume,
The figure is notional, as are the field-of-regard sizes, hard targets and other components shown in it.

In the situation depicted in Figure 4 the entire plume cloud is in the field-of-regard of each of the two standoff sensors,
while different hard target obstacles partially obscure it for each of the two. For either of the two sensors in isolation,
the obstacles in the sensor's respective field-of-regard constrain the quality of the map obtainable from the sensor data,
Using multiple sensors viewing a putative threat plume from different vantage points as shown in Figure 4 may be
advantageous. The notional situation shown in Figure 4 is just one of the possible situations in tenus of sensors', their



fields of regard, hard targets, and plume aspects. For instance, different sensors may have an overlapping view of the
plume or they may see separate parts of the plume. Information-fusion techniques that can take advantage of data from
multiple sensors that may differ in their field-of-regard or other specifics can lead to inlproved plume-mapping results.
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Figure 4: Notional view of one possible configuration of multiple standoff sensors for fusion-based plume mapping

The fusion-based plume mapping approach introduced and developed in this effort extends beyond the use of multiple
standoff sensors, as it also uses meteorology data. This allows exploitation of spatio-temporal relationships across
different frames corresponding to standoff sensor observations of the plume at different tinleS.
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Figure 5: Infonnation fusion-based plume mapping approach

The approach, shown in Figure 5, includes two major stages. The spatial stage fuses the maps corresponding to
individual standoff data at a given time. It includes a process introduced in this work and referred to as plume tapering.
Conceptually, plume tapering extrapolates concentration data below standoff sensor sensitivity thresholds. The inter
frame temporal map fusion stage fuses map information corresponding to different time-points. More specifically, the
previously observed maps are propagated to the current time. That propagation process exploits meteorology, namely
the wind direction and wind speed data. The inter-frame temporal map fusion process accounts for physical changes
such as the dispersion effects, and fuses the resulting constructs with the current map data. This yields the fusion-based
final map for a given time instance. Furthermore, since the process is repeated as the time progresses, yielding a fused
map at each time instance, the process in effect also provides plume tracking.

One of the questions that needed to be addressed in context of fusion-based plume mapping was that of measures of
perfomlance for mapping. Standard detection-task measures of perfonnance such as ROC curves, or the alternatives we
introduced for the detection task as discussed in the companion paper', are not suitable for the plume mapping
perfom1ance studies. Therefore, a new measure of perfonnance was introduced in this work for that purpose. Two
aspects must be included in assessing the map quality. Consider a plume and its map produced by some mapping
technique. In general, a part of the plume is covered by the produced map while another part of the plume may fall
outside of the map. On the other hand, the map may extend beyond the plume covering areas outside it. The former of
the two aspects portrays the map relevance in tenus of how accurately it maps the plume. The latter portrays the level to
which the map over-estimates the actual plume.

The introduced mapping measure of perfonnance includes both of the above aspects, as shown notionally in Figure 6a,
and thus can be viewed as a two-component vector measure. One of the components is the percentage of total plume



encompassed within the map, the other is the percent of the map that resides outside the plume area. Therefore, it is
desired that the map have Ihe value aloug the rlIst component as high as possihle, and along the second component as
low as possible. A perfect map will have its first component at 100%, i.e., the entire plume is mapped, while the value
for the second will be 0% which corresponds to the absence of any over-estimation. The evaluation of the above
measure requires the availability of ground truth, as usual for algoriUun performance studies. In addition, in this work a
mapping error spatial tolerance margin is used and, since the mapping errors within the tolerance level are neglected, the
measure value depends on the specific selection of the tolerance value. Furthermore, a desired contamination threshold
must be selected and the actual values of the measure depend on the selected threshold.

Plume mapping performance, whether using a single sensor or multiple sensors, depends on sensor positions, hard
targets, and other specifics. Figure 6 illustrates the value of the developed fusion-hased mapping approach on a dataset
for two standoff sensors. For this dataset, containing multiple release cases, the sensor locations and hard target
configuration are identical for all release cases. However, the plumes, wind conditions, and background conditions vary.
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Figure 6: Fusion·based mapping approach results

The fusion-based mapping approach makes use of detection outcomes, and therefore requires and assumes a detection
front-end stage. The choice of the detection algoritluu used in that front-end stage, and its perfonllance will affect the
mapping performance. To gain insight into the efficacy of the fusion-hased mapping algoritlllllic approach it is therefore
useful to decouple these two aspects. One way to do that is to investigate the mapping performance under the
assumption of an error-free preceding detection stage. The mapping results in Figure 6 were ohtained using that
assumption. The mapping performance results are shown as a function of the cumulative number of lidar alarm events,
which can be interpreted as the amount of standoff information available to the mapping process. The continuous lines
correspond to the mapping using the proposed fusion-based approach for the dataset discussed above. The dashed lines
correspond to the no-fusion approach which involves standoff data processed in the same way as in the fusion-based
approach, but without the multi-standoff and meteorology fusion process. The two components of the vector mapping
measure of performance are shown separately as Figure 6b and Figure 6c. However, it should be pointed out that the two
are codependent in the sense that, for any given cumulative numher of standoff alarm events shown on the horizontal
axis, the values of hath measure vector components corresponding to that number should be considered simultaneously.
(Also, conversely, combining values of two vector components that correspond to different cumulative lidar alarm
events number would be meaningless.)

In tenns of the graphs in Figure 6, by definition of the mapping vector-measure of performance, it is desirable to attain as
high a value as possihle in the rlIst graph (Figure 6b), and as Iowa value as possible in the second (Figure 6c). This
corresponds to mapping as much plume area as possible while over-estimating as little as possible. It is evident from
Figure 6b that U,e developed fusion-based mapping approach attains higher values for the first measure-vector component
than its no-fusion counterpart. The results shown in Figure 6b are significant in view of the values shown in Figure 6c.
That figure shows that the fusion-based mapping approach does nol over-estimate appreciably worse than the no-fusion
counterpart. Additionally, it is evident from both figures that while with increased amount oflidar evidence the value of
measure's first component increases in the fusion-based mapping approach, the second component remains low and
essentially unchanged. These results indicate the value of the developed fusion-based plume mapping approach.



5 INFORMATION-FUSION BASED PLUME PROPAGATION PREDICTION

Another higher-level information fusion task is plume propagation prediction. Plume propagation prediction is
sometimes referred to as forecasting and, as is well known, transport and dispersion models can be used for that purpose.
The fIrst point that should be clarifIed is how plume propagation prediction task discussed in this section differs from the
plume mapping task discussed in section 4. Both tasks aim at providing infonnation related to the plume shape and
exten!. The major difference is that the mapping task, generating a map at any given time instance Ik, relies on sensor
data for that instance ft, in addition to any potentially-available sensor data for prior instances I'<k. Tbat is, the mapping
task assumes the availability of a cllrrenl observation. The propagation prediction task, on the other hand, is defIned
here to start aj/er the last standoff-sensor observation and proceeds in absence of any further observations. An example
of this is the situation in which the plume that had been observed by a sensors moves beyond their fIelds of regard.
While some specifIcs of the mapping task discussed in section 4 may be seen as predictive steps, in this work the
mapping task is specifIcally limited to the times of sensor observations mentioned above, and the prediction task
assumes prior observations only.

The goal of the propagation prediction work in this effort was specifIcally to investigate the potential of infonnation
fusion for the prediction process, not the prediction techniques in general. SpecifIcally, the goal was to develop
techniques that may improve the propagation prediction quality by exploiting multi-source information. Two
approaches were proposed and developed. Both utilize plume mapping results and meteorology (wind) infomlation as
inputs. This is followed by a prediction stage. For both approaches, the starting point is the last available map, i.e., the
last observation of the plume by the sensors.
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Figure 7: Fusion-based propagation prediction approaches

The fIrst approach, shown in Figure 7a, involves a relatively simple single-realization prediction developed along the
principles of the STC approach. Essentially, the map at the time of last plume observation by the sensors is propagated
forward using the wind information. Since the last map is a single-realization entity, the approach is single-realization
oriented, and the same measure-of-performance used for mapping task can be applied.

The second approach, shown in Figure 7b, involves the nse ofa large-ensemble model, which in this work was the HPAC
model. While the utility of large-ensemble models as a data source for infonnation-fusion efforts is limited, as we
discussed in section 2, in context of the fusion-based propagation prediction task their use is appropriate. This is because
in the propagation prediction process as defmed above there are no additional plume observations the spatiotemporal
aspects of which could be exploited. On the contrary, approaching the prediction or forecasting as probabilistic in
nature, as is done in large-ensemble models, is well founded.

Embedding a large-ensemble model as part of the fusion-based plume propagation prediction approach is not without
challenges. In this effort a novel technique was developed to transfoml the last-observation maps into fomls on which
the HPAC model could operate. Also, due to the probabilistic nature of large-ensemble model outputs, perfonnance
studies of the propagation prediction approach with an embedded large-ensemble model reqnired introducing yet another
measure-of-perfonnance. Comparing a probabilistic distribution-like output of the large-ensemble model such as HPAC
to a ground truth of a specifIc plume realization is inappropriate. This wonld be tantamonnt to comparing a single
observed value of a variable to its probability distribution. That is generally not meaningful, because a single sample can
correspond to any point of the distribution, from its mean value to its tails as in the case of outliers.

The prediction perfonnance studies carried out in this effort involved comparing non-fusion and fusion-based
predictions to a reference considered as best prediction. Such best prediction is the one made by the same prediction
model when it is activated on the single-realization grolllld Imlll at the time of the lasl standoff sensor observation (i.e_,
the last map, either fusion-based or un-fused, from which the prediction process starts). The specifIcs of the probabilistic
prediction measure of prediction perfonnance, and the perfonnance study results which showed the benefIt of fusion
based prediction approach are beyond the scope of tltis paper. Instead, an example in Figure 8 (in this case using the



second prediction approach) illustrates the value of the developed fusion-hased plume propagation techniques. The
fusion-based prediction in this example is more similar to the best-prediction reference than its no-fusion counterpart.
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Figure 8: Prediction example

The development of two approaches to fusion-based plume propagation prediction has utility beyond exploring the
approaches for their respective benefits or for selecting one of them. These two approaches have different strengths that
could be useful dependent on particular specific circumstances faced by the decision-maker. For a given specific
prediction case, one of the approaches may produce a more "conservative" prediction, i.e., a larger predicted plume area,
while another approach may produce a smaller area. An example of one such case is shown in Figure 9a. In this
particular case, the approach that involved an embedded large-ensemble model produced a "more conservative" larger
area shown in the figure as the medium-gray area. Selection of that prediction amounts to a lower-risk position assumed
by the decision-maker. The STe-like single-realization oriented fusion-based prediction approach offered in this
particular case a smaller area, shown as dark-gray area in Figure 9a. Using that prediction rather than the large lower-risk
one would amount to the decision-maker taking a more "high-risk" stance. Finally, a relatively simple algorithm was
added to generate a medium-risk area that constitutes a simple average-based compromise between the results of the two
prediction approaches. The medium-risk area is the light-gray area shown in Figure 9a. If selected, that could
correspond to assuming a umedium-risk" tolerance position. Tradeoffs such as these are shown notionally in Figure 9b.
The decision-maker can exercise his/her judgment or comfort level to select either of the prediction results as the plume
area.

Moreover, multiple approaches such as the two developed in tltis effort could be incorporated within a decision-support
system. Information fusion techniques could rank multiple prediction outcomes, for instance by fusing contextual data
that ntight be available to derive a "current risk level" that would drive the ranking process. The ranked predictions
andlor the top-ranking prediction could be offered to the commander or other decision-maker as recollllllended for the
given particular situation and time. This can be viewed as another manifestation of the potential advantages of hybrid
paradigms.'
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Figure 9: Multiple prediction approaches and potential tradeofts
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6 CONCLUSION

This paper discussed selected aspects of an MIT Lincoln Laboratory effort developing infonnation fusion techniques for
biodefense decision-support tasks, involving lidar-based biological standoff sensors, meteorology, as well as point
sensors and potentially other battlespace sensing and contextual information. The discussion included techniques
developed in the following goal areas: generation of data needed for infomlation fusion algorithms, false-alarm
reduction for the bioattack detection task, plume mapping, and plume propagation prediction.



Two approaches developed for generation of ground-truth and multisource data were discussed, The Release
Augmentation approach allowed increasing the utility of available experimental data for infomlation fusion
development. The Meandering Plume and Background Simulation enabled computationally-efficient generation of
individual meandering plumes,

Algorithmic approach developed in this effort and referred to as the Spatiotemporal Coherence (STC) fusion combines
phenomenology and uncertainty aspects. The potential of STC to reduce false alarms significantly has been shown. A
more extensive discussion of STC. its adaptive extensions, a machine-learning approach, and measures of perfonnance
introdnced in context with the development of those approaches can be found in the companion paper'.

Approaches and techniques developed for higher-level decision-support tasks were discussed as well along with the new
measures of perfonnance introduced for those tasks. The potential of the developed fusion-based teclmiques to improve
both plume mapping and plume propagation prediction (forecasting) has been shown,
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